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Abstract Computation of bounds on the parameters of a linear model of 2 dynamical system, given
observations of the system input and sutput and bounds on the model-output errer, has developed into
an interesting alternative to parameter estimation by least-squares, maximum-likelihood or recursive
prediction-error methods. It has potential, so far unexpioited, for using prior knowledge of bounds on
plant behaviour to augment the information in the observations. The paper examines the forms of
bounds on the parameters of a discrete-time rational transfer-function model implied by bounds on
physically meaningful parameters such as time congtants, modal amplitudes, steady-state gains and
ringing frequency. Bounds on a single time constant are found to yield parameter bounds which are
mainly linear but have a non-linsar section, of degree rising rapidly with model order. Simultaneous
bounds on two or more time constants give overall parameter bounds ranging from pelytopes, easy to
handle, to intractably high-degree surfaces, depending on model order and how the original bounds
overlap. Bounds on amplitude and steady-state gain of a real mode prove to be linear. Oscillatory
modes yield quadratic bounds, ellipsoidal in the numerator- and denominator-parameter subspaces but
not overall, Bounds on the initial phase of the ringing bound a bilinear form in the namerator and
denominator parameters, at any given value of amplitude. Simultaneous bounds on amplitude and
phase lock intractable. The ringing frequency of an oscillatory mode is shown to impose parameter
bounds of a degree which doubles for each additional pole, but bounds on damping give lower
degress. The practical implications of these results are discussed.

prediction. It also has potential, so far

1 INTRODUCTION unexploited, for applying prior knowledge of
bounds on plant behaviour to augment the

In the past 15 years or so, methods have been information in the observations. The purpose
developed for computation of bounds on the of this paper is to assess the extent of that
parameters of a linear model of a dynamical potential, by examining the forms of the
system, given observations of the system input parameter bounds of a discrete-time rational
and output and bounds on the model-output transfer-function medel implied by bounds on
error {Walter [1990], Norton {1994, 19957, time-domain  guantities such as  time
Milanese er al[1996]). In principle, the constants, medal amplitudes, steady-state
output-error  bounds are merely mapped gains and ringing frequency, often available
through the model and observations to the from knowladge of the physics of the system.
paTameters; in practice, approximation is
usually necessary. As an alternative to 2 PROBLEM FORMULATION
parameter  estimation by least-squares,
maximum-likelthood or recursive prediction- The system is modelied by
error methods (Norton {19861, Ljung [1987], B ~1
Soderstrom and Stoica [1989]), parameter }f(z—l) = (z )U(z_i) +V(z_l) {1

. . -1
bounding has some advantages: directness and Az 7))
simpiicity, lack of  assumpiions  on
probabilistic or spectral stracture, imposition where Ufz') and ¥ (7'} are the z-transformed
of realistic limiiations on noise amplitude, system observed input and output, ¥7z7) the
aptness for worst-case control design or transform of the output error, and
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A specific medel may be viewed as a point
O=la; as.ay, b;.‘,bmjr'_—*[&q“ b7 in the space
of the coefficients.

The modal expansion of (1), assuming for
brevity that the poles are distinct, strictly
stable and positive if raal, is
B(:wl) Z £
4@l T k=iz-py

with poles {py} and modal amplitudes {gi}. A
real pole and its modal amplitude determine
respectively the time constant -T7/n p, and size
of the associated sampled exponential
component of the unit-pulse response, where 7
is the sampling interval. Complex-conjugate
poles {pe P} generate an oscillatory mode;
they determine the angular frequency <p /T
and damping fime constant -T/n|py of the
ringing, while their modal amplitudes (ge g}
fix its amplitude [g; and initial phase Zg;.

3

The problem is to find the bounds imposed on
g when such a quantity is restricted fo a
known range. In other woerds, the region of &
space swept out as the specified gquantity
varies over its range is to be found. Particular
interest centres on whether the boundary of
this region (the “feasible set™) is ellipsoidal or
piecewise linear and convex, making it
compatible with standard parameter-bounding
algorithis {Walter 1990]).

3 BOUNDS ON POLES
3.1 Reualpoles

Pole z = py satisfies

-1 T
Alpy ) =0 = ppa=-1 (4}
which is a hyperplane in the a-subspace of &
space, with normal

. T
-1 -7 —p7 11

Py =P Pp e P (5)

Upper and lower bounds cn p, vield two such
hyperplanes, but it is not immediately clear
what part of a-space is swept out by the
admissible values p. & /B2, [ It depends
on how the signs of & fc"pk i=12....,n
depend on a. MHdy /[y, is  positive

(negative) throughout, a; is maximized by
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f)k{ 1) whereas if it is zero within the
range, there is 2 smooth maximum. At amy

point a where A(p];l) =0,

' -i, .
a; ;‘p;f(‘ii(pic)waipk y =1, 2., n (6)
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-, g -1
=Py {IA(pk)-pk[._:l[a!pk }

1 ~f
= ]§1 la;p,, )
The derivatives are all zero on the surface
H
~{

El[alpk = () (&)
where, from the algebra leading to (7), both
L =1 =1, 4 .
A(p:k )y and cz-ﬂi(pk )/ ép), are zero. This

surface is the envelopeof (4), along which the
tangent point moves as p; varies. {1t is also the
locus of a for a repeated pole]. The feasible-a
side of each p, bound changes as a moves
past the point of tangency along the bound.

Example.: second-order model.

infeasible
feasible
i
infeasible
infeasible
envelope
ay max. pr min, pe 0

locus focus

Figure 1 Feasible set defined by bounds on
one pole, 2™-order model

InFig. 1, all 2 to the left of the 2 bound (and
right of the 5, bound) are {feasible for a; up

to the lower point of tangency; above it, a is
feasible to the right of both bounds, so the
near-irianguiar segment between the itwo
tangency points is feasible. Above the upper
tangency, the feasible region is right of the
P bound ard left of the 7, bound. Overall,

the feasible set consists of threee sections: two
triangles bounded by the straight-line



individual pole bounds and by
TP TPy Say SR TRy
fplﬁz <ag <ﬁ1ﬁ2 , and the near-triangle

formed by the linear pole bounds and the
envelope described parametrically by (8),

gasiiv shown to be
2

al“ = 4a2 (9
Approximation of the snvelope section by a
straight line mmay be acceptable, allowing
marginally underdamped models, if the pole
bounds are tight encugh. il

The feasible set defined by independent
bounds on all poles of an sth-order model is
simply the mtersection of the n seis for the »
poles. Its boundary therefore generally
comprises sections of hyperplanes (4) and
non-linear sections (8).

Example: second-order mode! again.

Disjoint ranges for the two poles give a
quadrilaieral intersection, which can be
handled directly by standard recursive
parameter-bounding  algorithms  (Walter
[1990]}. The other two cases, (i) overlapping
ranges and (ii) one range containing the other,
are more complicated. In case (1), the near-
tmangular sections overlap, so part of the non-
linear bound is active. Moreover, the lnearly
bounded part consists of the union of two
triangles and a quadrilateral. Linear-bounding
algorithms would have to be modified to deal
with it, and more seriously, its non-convexity
prevents efficient approximation by the
convex sets, cllipsoids or parallefotopes
(Vicino and Zappa [1993]), often employed.
Case (i) excludes the quadrilateral but is
stherwise similar, £

More generaily, for a model of any order (8)
can be turned into an equation ffay,..., g.=0
by repeated use of (4). For a 3"-order maodel,
the result is
4a§a3 - alzazz - 18a1a2a3
s, (10)
+ 4&'2 +27a%F =0
3

For n=+ the equation contains 36 terms and is
of degree 10 overall and 8 in a;. To compound
the difficulty, the aumber of configurations of
the ranges for the # poles rises rapidly with n;
for n=3, 15 cases must be considered, and for
n=4, 105 cases arise. However, the case of
disjoint ranges remains straightforward, with
entirely linear bounds.

3.2 Complex-conjugate poles

Now bounds on angle as well as size of the
poles mast be considered. The pole pair
P =cej¢ =g+ j8,

« .
pkﬂc€j¢ =a - jf
has amplitude and angle bounds

g2 é_pkpz =a’ +,82 sEz,

. *
st e | (a2
$ < cos e @

.
and influences a through

A =2 10527,

_ _ (13)
(I-&-aiz 1+.‘.-§~ar]’1_22' n+2)

(1)

3.2.1 Bounds on pole amplitude

For n=2, bounds on ¢ give directly

—52 <a, 3—52 {14)
Less obviously, as a=ccosg>0 for any
sampling rate above four per cycle of ringing,
—2c<ap <0 (13)
These box bounds are easily handled, but (13)
is loose.

For 123, equating powers in {13} gives

(16}

ap =cay o

from which o and a/to ¢« ,must be
sliminated to find an equation of the form
f(al,az,___,a”,c)xo (17
For n=3, (14) yields bounds of the form
cza1a3 —c4a2 —a% +06 =0 (18)

forc2 =62,62. The quadratic in @), a; is
sign-indefinite, so (18) does not fit ellipsoidal
parameter-bounding, Its linearity in a; and a,
suggests computing the parameter bounds
separately at a number of values of a;.

For n=4, (16) gives
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—Ec6aza4 -1-62;120; +c ay —ai
/ 2
+c4a§ +cga4 —cl“ =0 (19

which would require a general non-linear
bounding technique, e.g. Jaulin and Walter
[1993].

3.2.7 Bounds on angle of complex poles

In (16), « is ccos ¢ and the aim is to
eliminate ¢ and derive an equation

g(al,az,...,a“,gﬁ)io (20
Denoting cos ¢ byy we obtain for n=2
a, +zwa£; =0 an

so bounds on ¢ in the range 0 to /2 {covering
all adequate sampling rates) imply
2

a “
< cos” g 22)

cos2 & 2
4a2

with a, negative. These parabolic bounds give

a non-convex feasible set which can, however,

be approximated arbitrarily closely by the

region between (sections of) two concentric

eilipsoids. For n=3, we get

3022 2 . N
ajas =dydy = (n~ +3majamas +nayag
3 32 4
+(n+Day + 77 a3 =4 (23)
where n=2cos2g-1. A bound of this form is
unsuited to easy computation, even in a 2-
dimensicnal subspace.

For m=4, a 30-term equation of degree 8
results.

4 BOUNDS ON MODAL AMPLITUDE
4.1 Real poles

1 the moedal expansion (3},

By )
Ep =, -1, 24)
‘“ik(Pk )
where
(1—pkz“?‘).,4k = oae™h (25)
30
gkz{k(pf) -pkB(p;1)=G (26)

From (23), the coefficients in 4, are linear in
a, so (26) is a linear relation between a and b
for given p, By differentiating (25) with
respect to 2”0 and setting z=pk,

TT7

_I[ﬂ(z—lﬂ

-1
Ak(pk )=_Pk 3 27
-4 -
:.‘—"Pk
giving from (26}
-1 -2 -n
P 2P o P PR
-1 -+1
+[1 Py . Ph ]b (28)

= gkp’sza +p§{mﬂ'b =0
in obvious notation. For a given pole value,
bounds on gi thus confine [a” b']" between
two hyperplanes, which have parallel
intersections with any constant-b subspace,
with p’k as common normal,

The dependence of these parameter bounds on
P can be removed by eliminating it between
(28) and (¢). For n=1, the result is
gap by - &) - abby
, 29
+aq(by —2g) +by =0
of degres 3 overall. For constant b, (29) s a
parabola but for constant a (such that the
poles are real) it is hyperbolic. Higher-order
models have higher-degree loci, even less well
adapted to the standard bound-updating
algorithms.

4.2 Complex poles

The size and angle of the complex-conjugate
pair {g, , g} must be considered,

4.2.1 Bounds on size

The derivation of (28} did not rely on the pole
being real, so the complex modal amplitude is
(mT
g, = “pk i
k p i7{3" A
and its size is given by
T (m)y (m)*T, *
igkl = L& T T T oW
a pRpy A

(30

Gh
T () )
“b ?k b
aTP',’L_a

where



—h+1 _*—i+l —i+1 *—h+]
hi 2
= o ~UE2 cos(h—i)p (32}
A —f, Fef =i, *h
, Py Py tipg Aoy
[Pk] hi ™ 7
= hic "D costh - 1) (33)

Hence a bound on g bounds the ratio

between guadratic forms, in a and b. It can be

shown that both are positive-semidefinite. The
n .

proof for P IE )wﬂ} be skeiched; the other

differs only in detail. First, write

(m) _
P, = DRe(F }D
where D = diag(i,cwl, ...,c_mH) (34)

and {F J =08 _ e
M ik

then define

h
Te o _ h-1 -
qm =x Fm.x, 5y, = Elf X (335)
for any real, non-zero 1. From

Spo=SSpoy T
v 2 2
Iy =qp_y — (655107 +54 (36}

with g = x12 = si?
it follows by induction that
2
Re(gp) = Re{sy, ) +Imis, > 20 (37)

and hence, with D real, P;Em) =0. Bounds
el =t sles o)
& min Bel =1k max

therefore give, generically,

hTP,IEm)b b TP!Em)b
— =<3 P,’QaS‘—z" (39

‘ 2
B g
kmﬂ}; k min

at a specified value of a, and

T o T,

jz
o (40)

2

aTP’ a

=

E;.

Klmay
at given b; each pair of bounds confines a or b
between two concentric, similar eflipsoids.

Example;  an  underdemped second-order
model.
The mode!

1 -1 2

Bz ) z T =07z

AzH o7 eogesT
has poles z=0.85+0.35j and gives

P(m) _ 1 10059
ke 10059 11834

L1834 23809
B =

2

23809 56020

for k=1, 2. At the correct value of b, the
bounds on a are ellipses with axds directions
[0.9166 -0.4]", [0.4 0.9166]" (the sigenvectors
of P;)and semi-axis lengths 1.722, 0254
(the reciprocals of the square roots of the
eigenvalues). The bound on g and the value of
b change only the size (not the shape or
orientation) of the eilipse. |

4.2.2 Bounds on angle

To obtain a relation between the model
parameters and thé angle & of g,

pulg, =f§k|€j5 =g, [(cosd + jsind) in

’Tal L mT
EpPp 7P,

separate the real and imaginary parts and

eliminate [g;] between them. The result is

{alaz + ﬁlﬁz}siné’ = (cxlﬁ2 - ﬁlaz)cosﬁ
(41}

b=0 28

where

T T

This can be reduced to

b= a?, +jﬁ2 (42)

a'8h=0 (43)
where
Spi = e sin(é + (i ~h - gy (44)

with ¢, ¢ the size and angle of the complex
poie, as before,

A bound on ¢ thus imposes a hyperplane
(through the origin) bound on 2 at fixed b,
and vice versa.

4.3 Bounds om contribution of mode to
stezdy-state value of unit-step response

Following a unit-step input, the outpwt settles
according to
By 8 &
— T =
ST =t I

5o for a real mode, bounds

as t o (43)
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1“_pk

om its final contribution to the step response
give hyperplane bounds on a and b, as did
{28), the sole difference being the rescaling
effect of 1 - g in either the a or the b
directions.

(46)

A complex-conjugate mode pair has
5
2 8Kk
L
(1-py P “n

R
1€

7

1-2a+c”

in the notagon of (13), so again only a
rescaling is needed at amy particular pole
value, this time in (40),

The overall steady-state gain of the model
gives notably simple parameter bounds:

-
g =g
[#] A(i} &
(- .T. T - (48)
Jholn a-1,b< -k,

= ~
i1l a-1lp e

where 1, denotes an rvector of 1’s. The

simplicity of these bounds was pointed out

long ago (Norton [1976]) in connection with

least-squares parameter estimation.

3 CONCLUSIONS

Of the items with known prior bounds
considered above, those yielding high-degres
parameter bounds prevent use of the standard
parameter-bounding algorithms. As general
non-linear bounding is intrinsically expensive
in computation, they have little promise for
on-recursive use, [or instance in adaptive
conitrol or in tracking time-varying behaviour,
On the other hand, the items giving linear or
positive-semidefinite quadratic bounds are
compatible with existing algorithms, and can
be treated as extra observations with only
minor modifications. A noteworthy feature is
that the implied bounds are often much
simpler in a subspace {(for instance of a or b)
than overall. In the practically important case
of a second-order model, the parameter
bounds are ajl simpie in functional form, but
non-convexity of the overall bounds may be a
problemy, as seen when two poles are known to
fail in specific ranges.
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The analyses presented here leave largely
unexamined the overall bounds imposed
jointly by simultanecus bounds on two oF More
items, e.g. a pole and its modal amplitude. As
that sort of prior information will often be
available, its effects should be investigated.
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